べっく日記

偏微分方程式を研究してるM2の日常

参考文献の管理の仕方。

研究室の後輩が6人も増えました.まだ誰とも会ってないけど.そういえばサークルの後輩にとある科目をテスト前に(少し)教えてあげたんですが,思ってたよりもできてなくてショックを受けてます.

 

さて,研究室に配属されると,びっくりするくらい勉強するようになります(なるはず).はじめのうちは優れた和書を読むことでゼミの準備が捗るのですが,徐々にそれだけでは足りなくなります.特にM1の夏以降になるとゼミで扱う文献が本ではなく論文になることが多いです.その場合,その論文だけでなく,その論文が参照している論文も読まないといけなくなります.

 

その結果,パソコンがダウンロードした論文でいっぱいになってしまいます.きちんと管理しておかないとどの論文を自分は持っているのかわからなくなったり,読んだことのある論文はどれなのかわからなくなります.特に一度読んだことのある論文をもう一度「探して」読むことは研究の効率を下げる原因になります(もちろん,何度も同じ文献をじっくり読むことは勉強になりますが,ここではどんなことが書いてあったかを思い出すために論文を「探して」読むことを想定しています).夏休みの頃,参考文献をどのように管理するか私は迷子になっていたので,迷子になる人が少しでも減ったらいいな,というのが今回の記事です.

 

1. 文献のリストの作成

文献管理のフリーソフトとして Jabref や Mendeley とかが挙げられます.しかし私は Excel を推奨します.なぜなら「簡単」だからです.もちろん Jabref や Mendeley は高機能だし,メリットはいろいろあるのですが,結局のところ,文献を管理したいだけなので,Excel で十分だと私は思います.Excel を使うメリットとしては何より,その操作に慣れていることが挙げられます.

 

では,どのようにして文献リストを作成するのか,ということになるわけですが,私は次のようにしています.

f:id:watanabeckeiich:20170210171336p:plain

特に気をつけているのは次の点です.

ア.著者順に並べる(これは論文の参考文献を挙げる順番がそのようになっているため)

イ.論文についてのコメントを書く(何についての論文かわかるように,もしよくわからない場合は?をつける)

 

また,BibTexキーも明記し,雑誌名は略称にしておきます.雑誌名に関しては MathSciNet を参考にすると良いでしょう(Google Scholar は間違っていることが多いのでやめましょう).文献のリストは

「著者名・タイトル・出版年・雑誌名・BibTexキー・論文に対するコメント」

これだけあれば十分だと思います.Mendely とかのメリットとしてすぐにPDFファイルを参照できる,というのがありますが,きちんとPDFファイルを管理できていればそのような機能はいらないと私は考えます.

 

2. PDFファイルの管理

文献リストが作成できたとしてもPDFファイルがどこにあるのかわからなければ意味がありません.ここでは私がどのようにしているのか,紹介したいと思います.

 

まず,著者のイニシャルごとにファイルを作成します.

f:id:watanabeckeiich:20170210172606p:plain

まだ分類できていないものは「未分類」のフォルダに入れておきます.

 

次に著者ごとにフォルダを作成します.共著の場合は「〇〇_△△」のようにしておきます.和文誌で著者が日本人の場合であっても,英語で標記します.これは漢字で書いてしまったときに順番が崩れることを防止するためです.

f:id:watanabeckeiich:20170210172815p:plain

 

最後にPDFファイルのファイル名を設定します.きちんと順番が揃うように「著者名ー出版年ー雑誌名」とします(雑誌名は略称もしくはイニシャル).

f:id:watanabeckeiich:20170210173109p:plain

 

以上が私の文献の管理の仕方でした.これよりもっといい方法があったら教えてください.まあ,文献を一生懸命管理することよりも文献を一生懸命読むことのほうが大事なんですけどね.

 

文献リストに自分の論文を載せられるようがんばりたいと思います.では.

研究進捗2017/2/7

修論計画書を先生に見せ、OKをもらった。

・Lopatinski行列式の計算が下手くそでかつ少々雑だったので、もっと計算しろと言われた。方針としては概ね合っている。

 

<来週の目標>

・「ちゃんと」計算を頑張る。

・大変だけど、全ての表示を書き出す。(工夫の余地はないので、ゴリゴリ計算するのみ)

助教の先輩の計算をベースに計算を組み立てたが、助教の先輩の計算が少し間違っていたようなので、きちんと自分で計算を行う。

 

 

明日修論発表会ですが、午前中用事があり、一番聞きたかった人の発表が聞けないのは残念です。誰か私の代わりに聞きに行ってもらえるとうれしいです。では。

ホームページを開設した。

先程ホームページを開設しました.

リンク: Keiichi WATANABE

 

どんどん更新できるように研究頑張りたいと思います.

では.

研究進捗2017/2/3

毎週恒例?の進捗報告のお時間です。やったね。

 

・ゼミで発表した内容に少し誤りがあったので、修正した上でPDFにまとめた。

・Lopatinski 行列式を計算した。あと少し、詰めなければならないところはあるが、計算がほぼ終了した。4×4行列なのでかなりタフだった。我ながらよく頑張ったと思う。これは今考えている問題の折り返し地点を回ったことを意味する。

修論計画書を助教の先輩に見せ、助言をもらい、修正した。我ながらよく書けたと思う。

 

<来週の目標>

・Lopatinski 行列式の計算をもう少し詰め、証明を完成させる。

・高さ関数を含めたレゾルベント問題を考える。

 

 

修論では、一般領域(「曲がった」領域)まで含めてやる予定だったのですが、相転移が発生する場合は、自由境界を固定領域に変換する際、Lagrange変換は使えず、代わりに半沢変換を用いなければならないが、そうなると多様体上で定義された関数を考える必要があるという点から、一般領域までやるのはやめようとなった(と助教の先輩に言われた)。博士における研究のお楽しみですかね。

さて、年が明けてはじめて中本に行ってきました。

f:id:watanabeckeiich:20170203214507j:image

大変美味しかったです。そういえば店員にまだ学生なの?と言われてしまいました。院生の名に恥じぬよう研究に勤しみたいと思います。では。

 

数学は役に立たないのか。

最近研究の進捗ばかり書いてるのでたまには寄り道してみようと思う。

 

数学は役に立つかどうかというのはまあ古くからある議論の一つだが、今まで納得したようなしないような、そんな気がする。ここでは、数学は役に立つと主張する立場(以後略して役に立つ派)と数学は役に立たないと主張する立場(以後略して役に立たない派)の両者からこの問いの本質を探っていこうと思う。

 

まず、役に立つ派の主張を抜粋してみると、

・数学は基礎学問であり、工学へ幅広く応用されている。工学が役に立っているのだから、数学も役に立っている。

・数学で培った論理的思考は生活や仕事の役に立つ。

・毎日目にする天気予報だって統計学の研究に基づくものだ。

・数学に役に立たないと主張するお前が社会の役に立ってない。

 

まあ、最後はさておき、どれもそこそこ納得し得る主張である。では、一方で役に立たない派の主張を抜粋してみると、

・数学できなくても今まで何の苦労もなく生活できた。

・日常生活で2次方程式を解いている人を見たことがない。

・数学は役に立つかもしれないけど、自分にとって数学は役に立たない。

・そもそも数学は嫌いだ。

 

まあ、役に立たない派の主張をまとめると、私は数学できなくても何も困らない、である。ちなみに、私も日常生活で2次方程式を解いている人を見たことはない。これは少し前に機内で微分方程式解いてた人がテロリストと勘違いされる事件があったので、みんな数式の取り扱いには注意していることに因るものであると考えられる。

 

このように、そもそも役に立つ派と役に立たない派の数学に対する「視点」が異なる以上、役に立つ派と役に立たない派がうまく「和解」するのは困難である。この場合、以前書いたように、クリティカルシンキングの知識が活きてくる。

 

watanabeckeiich.hatenablog.com

 

まず、役に立つ派、役に立たない派はどちらも人間である以上、どこかで共通の認識を持っているはずである。この場合、両者は「数学が役に立ってくれたらうれしい」という点で一致していると、私は考える。

 

役に立たない派の主張で「算数は役に立たない」というのは聞いたことがない。つまり、役に立たない派も算数は役に立つと(暗に)認識しているわけである。しかし、よく考えてみれば、算数で習う、速さや割合などは生活では当たり前のように登場しているから、算数が役に立つかどうかというよりも、使っているかどうかということが、算数に対する認識に影響を与えていると考えられる。

 

このような視点から、役に立つ派と役に立たない派の主張を再考すると、役に立つ派は数学に対して「能動的な」認識を、役に立たない派は数学に対して「受動的な」認識を持っていると分類できるような気がする。

 

では、なぜこのような認識の違いが生まれるのか。まあこれは単純に中学高校の数学が得意だったかどうかというだけな気がする。実際に、役に立つ派は数学が得意だった人が多いし、役に立たない派は数学が不得意だった人が多いような気がする。

 

しかし、中学高校で数学がかなり苦手だったのにもかかわらず、役に立つ派に所属している人もよく散見する。この人たちに共通しているのは、数学に対してきちんと敬意を払っているということだ。すなわち、数学が苦手だったからといって、それが数学を批判する理由には当たらないと考えているということだ。

 

さて、役に立つ派も役に立たない派も、「数学は役に立ってくれたらうれしい」という点で認識は一致しているのであった。つまり、役に立つ派と役に立たない派が「和解」するには、役に立たない派を説得することが必要になる。

 

役に立たない派を説得するにあたり、そもそも、数学が役に立つとはどういうことなのか。そもそも、数学とは何か。ということから始めよう。

 

「数学とは何か」

 

一見哲学のように思えるが、もうすでに答えは出ている。アメリカ数学会(AMS)は数学の分野を以下のように分類している:

00 General / 01 History and biography / 03 Mathematical logic and foundations / 05 Combinatorics / 06 Order, lattices, ordered algebraic structures / 08 General algebraic systems / 11 Number theory / 12 Field theory and polynomials / 13 Commutative algebra / 14 Algebraic geometry / 15 Linear and multilinear algebra; matrix theory / 16 Associtive rings and algebras / 17 Nonassociative rings and algebras / 18 Category theory; homological algebra / 19 $K$-theory / 20 Group theory and generalizations / 22 Topological groups, Lie groups / 26 Real functions / 28 Measure and integration / 30 Functions of a complex variable / 31 Potential theory /32 Seveal complex variables and analytic spaces / 33 Special functions / 34 Ordinary differential equations / 35 Partial differential equations / 37 Dynamical systems and ergodic theory / 39 Difference and functional equations / 40 Sequences, series, summability / 41 Approximations and expansions / 42 Harmonic analysis on Euclidean spaces / 43 Abstract harmonic analysis / 44 Integral transforms, operational calculus / 45 Integral equations / 46 Functional analysis / 47 Operator theory / 49 Calculus of variations and optimal control; optimization / 51 Geometry / 52 Convex and discrete geometry / 54 General geometry / 55 Algebraic topology / 57 Manifolds and cell complexes / 58 Global analysis, analysis on manifolds / 60 Probability theory and stochastic processes / 62 Statistics / 65 Numerical analysis / 68 Computer science / 70 Mechanics of particles and systems / 74 Mechanics of deformable solids / 76 Fluid mechanics / 78 Optics, elecromagnetic theory / 80 Classical thermodynamics, heat transfer / 81 Quantum theory / 82 Statistical mechanics, structure of matter / 83 Relativity and gravitational theory / 85 Astronomy and astrophysics / 86 Geophysics / 90 Operations research, mathematical programmig / 91 Game theory, economics, social and behavioral sciences / 92 Biology and other natural sciences / 93 Systems theory; control / 94 Information and communication, circuits / 97 Mathematics education

ここで特筆すべきは番号が連続しているわけではなく、ところどころ飛んでいることである。これは新しい分野が登場することを期待しているのである。さて、こんなに分野があれば、全く知らない分野もたくさんあってもおかしくない。私は解析系の人間なので、例えば、結び目理論の話を聞いてもよくわからないし、それが何の役に立つかもわからない。でも、自分の研究に役に立ってくれたらうれしいなとは思う。これは役に立たない派の立場ではないだろうか。

 

つまり、「役に立ってくれたらうれしい」のは、自分にとってそれがプラスに働くことが期待されるときのことを指している。

 

さて、有名な話を紹介したい。グレゴリー・ペレルマン氏は位相幾何の問題であるポアンカレ予想微分幾何統計力学を組み合わせて解いたのは有名な話である。位相幾何を専門とする人からすると、統計力学は「役に立ってくれたらうれしいけど、自分には役に立たない」のである。ところが,ペレルマン氏は統計力学は「役に立つ」ことを示したのである。その結果、位相幾何の専門家にとって統計力学は「どうやら位相幾何の役に立つらしい」という認識に変わったはずである。ここで重要なことは、統計力学が「役に立たない」という認識から「役に立つ」という認識に変わったことである。これは自分の身近な範囲に対して「役に立つ例」を提示され、それが自身にとってプラスに働いたことに因るものと考えられる。

 

例えば、量子力学における基礎方程式であるシュレーディンガー方程式も、実は弾性体を表す方程式と関係があったり、周期関数の解析の為に導入されたフーリエ変換偏微分方程式の研究には欠かせないなど、研究を進める上で、他の分野の助けを借りる事はよくある。

 

これらに共通するのは、役に立つことがある日突然わかった、ということである。

 

結局のところ、役に立つ派が役に立たない派と「和解」するには、役に立たない派が数学は役に立つ、自分にとってプラスに働く、ということを認識するまで役に立つ派は辛抱強く待ち続け、さらに、「数学は役に立つ」ということの啓蒙活動を頑張るしかないのかなと思う。

 

まあ一番いいのは争わないことだと思うんですけどね。両者の意見を尊重し、立場を中立に保つことが一番平和だと思います。

 

眠くなってきたので、今日はこの辺で。おやすみなさい。

研究進捗2017/1/26

・Lopatinski行列を整理することはできなかったが、各成分の分母はすっきりとしているので、オーダーを考えることにより上手く評価することはできそうだ。

・先週計算した内容をゼミで発表した。私はレゾルベント方程式の右辺がとりあえず 0 として、そこが f の場合はあとで考えようと思ったが、先生から別に右辺を 0 にする必要はないのではないかと言われた。証明のアイディアは昨年の秋に読んだ先生の論文からパクっているのだが、何故だろうか。もう少し計算をしてみてどっちにするか考えてみたいと思う。たぶん 0 にしておかないとLopatinski行列式のオーダーを考えるのがめんどくさくなると私は考える。

修論計画書を先生に見せたところ、表(研究目的・先行研究)は大丈夫だったが、裏(研究計画)はもう少し具体的に何をするのかを書くように注意されたので、つい先程研究計画を大幅に書き換えた。

・ゼミで発表した内容はまだ1/3程しかPDFにまとめていない。

 

<来週の目標>

・ゼミで発表した内容をPDFにまとめる。

・Lopatinski行列式を計算する。

 

 

もう少しすると研究室配属が発表されるようです。今年は私に後輩ができるのでしょうか。さて、自動車学校の進捗ですが、ようやく技能教習の予約を取り終わり、順調に行けば来月中旬くらいには卒業できそうです。そんなわけで路上教習が何回かあったわけですが、我ながら自分の運転にはハラハラします。ハラハラするのはゲームアプリのガチャくらいにしておきたいものです。そういえば中本の北極をしばらく食べてない気がします。誰か一緒に食べに行きましょう。では。

研究進捗2017/1/21

・参考文献リストを更新した。

・Korteweg テンソルをきちんと導出した。それに伴い、エネルギー保存則の式を書き直し、それが先行研究と一致していることを確認した。

モデリングをまとめたPDFファイルを更新した。

・応力テンソルを分解して jump condition を一つ追加した。

・x_n に関しての常微分方程式については、致命的な計算ミスが発覚したので計算をやり直し、Lopatinski 行列を求めた。

修論計画書を書き上げた。

 

<来週の目標>

・Lopatinski 行列をもう少し整理し、その逆行列を求める。

・ゼミの発表後、発表内容をPDFにまとめる。

・先生に修論計画書を見せ、コメントをもらう。

 

 

先日の数学Q&Aにおいて解析半群に関しての質問あり、かなりビビってしまいました。去年、一昨年に勉強したことを復習することが求められているような気がします。復習といえば教習所もそうですね。何回も同じことを注意されてしまいます。もしかしたら私は復習が苦手なのかもしれません。誰かいい復習の仕方があったら教えてください。では。